
US NDC Modernization
SAND-xxxx
Unclassified Unlimited Release
December 2014

US NDC Modernization Iteration E1
Prototyping Report: Processing Control
Framework

Version 1.1

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20569R

SAND-xxxx Page 2 of 42

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

SAND-xxxx Page 3 of 42

SAND-xxxx
December	2014

US NDC Modernization Iteration E1 Prototyping Report:

Processing Control Framework

Ryan	Prescott
Benjamin	R.	Hamlet

Version	1.11
Sandia	National	Laboratories

P.O.	Box	5800
Albuquerque,	New	Mexico		87185

ABSTRACT

During	the	first	iteration	of	the	US	NDC	Modernization	Elaboration	phase	(E1),	
the	SNL	US	NDC	modernization	project	team	developed an	initial	survey	of	
applicable	COTS	solutions,	and	established exploratory	prototyping	related	to	
the processing	control	framework	in	support	of	system	architecture	definition.
This	report	summarizes	these	activities	and	discusses	planned	follow-on	work.

REVISIONS DECEMBER 2014

SAND-xxxx Page 4 of 42

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 3/21/2014 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 5 of 42

TABLE OF CONTENTS

US NDC Modernization Iteration E1 Prototyping Report: Processing Control
Framework .. 3

Abstract ... 3

Revisions ... 4

Table of Contents .. 5

1. Overview ... 8

2. Schedule.. 8

3. Motivation .. 9

4. Processing Control Framework ... 9

4.1. Definition ..9

4.2. Design Goals ...9

4.3. Constraints..10

4.4. Iteration E1 Prototyping Activities...10

4.4.1. Initial COTS Survey ...10

4.4.1.1. Stream Processor Frameworks ..11

4.4.1.1.1. Apache Storm ...12

4.4.1.1.2. Apache S4 ...13

4.4.1.1.3. Apache Samza...13

4.4.1.2. Java Application Frameworks ..14

4.4.1.2.1. Java EE ..15

4.4.1.2.2. Spring Framework...15

4.4.1.2.3. Application Servers ...16

4.4.1.2.3.1. Wildfly...16

4.4.1.2.3.2. GlassFish ...17

4.4.1.2.3.3. Apache Tomcat ...17

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 6 of 42

4.4.1.2.3.4. Jetty ..17

4.4.1.2.3.5. WebLogic ..17

4.4.1.2.3.6. WebSphere ...18

4.4.1.2.3.7. Conclusions ...18

4.4.1.3. Enterprise Service Bus ...19

4.4.1.3.1. WS02 ..19

4.4.1.4. Complex Event Processor Frameworks ..20

4.4.1.4.1. Esper...20

4.4.2. Exploratory Prototyping...20

4.4.2.1. Apache Storm..21

4.4.2.1.1. Background...21

4.4.2.1.1.1. Processing Model ..21

4.4.2.1.1.2. Clustering..22

4.4.2.1.1.3. Fault Tolerance ...23

4.4.2.1.1.4. Process Monitoring ...24

4.4.2.1.2. Cluster Configurations ..24

4.4.2.1.3. Topology Configurations ...25

4.4.2.1.3.1. Prototyped spouts and bolts..25

4.4.2.1.3.2. Specifying Processing Guarantees ...26

4.4.2.1.3.3. Assigning tuples to Processing Tasks..27

4.4.2.1.4. Type System..27

4.4.2.1.5. Multilanguage Support ...28

4.4.2.1.6. Serialization and Messaging ..28

4.4.2.1.7. Summary ..29

4.4.2.2. Java EE/Wildfly 8 ...29

4.4.2.2.1. Background...29

4.4.2.2.1.1. Containers & EJBs..29

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 7 of 42

4.4.2.2.1.2. Dependency Injection ...30

4.4.2.2.1.3. Wildfly Server Configuration ...30

4.4.2.2.1.4. Messaging ...31

4.4.2.2.2. Exploratory Prototype...32

4.4.2.2.2.1. Wildfly Server Management..32

4.4.2.2.2.2. Mock Seismic Pipeline ...33

4.4.2.2.2.3. Limitations ..34

4.4.2.2.2.4. Conclusions ...34

4.5. Follow-On Work..35

4.5.1. Explore additional PCF solutions ..35

4.5.2. Assess custom PCF solutions ..35

4.5.3. Select a PCF solution for the executable architecture prototype............................36

4.5.4. Develop a Basic Processing Pipeline Prototype ..36

Appendix A. Comparison of Prototype and Existing System Processing Control
Frameworks 37

References... 39

OVERVIEW DECEMBER 2014

SAND-xxxx Page 8 of 42

1. OVERVIEW

The	US	NDC	Modernization	project	statement	of	work	identifies the	definition	of	
a	modernized	system	architecture	as	a	central	project	deliverable.		As	part	of	the	
architecture	definition	activity,	the	Sandia	National	Laboratories	(SNL)	project	
team	has	established	an	ongoing,	software	prototyping	effort	to	support	
architecture	trades	and	analyses,	as	well	as	selection	of	core	software	
technologies.

During	the	first	iteration	of	the	US	NDC	Modernization	Elaboration	phase	(E1),	
spanning	Q1	- Q2	FY2014,	the	prototyping	effort	included	initial	COTS	surveys	
and	exploratory	prototyping	addressing	three	core	elements	of	the	system	
architecture:

1. The	Common	Object	Interface	(COI) provides	the	system	and	research	
tools	with	access	to	persistent	data	via	an	abstraction	of	the	underlying	
storage	solutions.

2. The	processing	control	framework provides	for	the	definition,	
configuration,	execution	and	control	of	processing	components	within	the	
system,	supporting	both	automated	processing	and	interactive	analysis.

3. The	User	Interface	Framework (UIF) provides	a	flexible	platform	for	the	
definition	of	extensible	graphical	user	interface	(GUI)	components	&	
composition	of	GUI	displays	supporting	users	of	the	system	and	research	
tools.

This	report	summarizes	the	iteration	E1	prototyping	activities of	the	SNL	project	
team	specific	to	the processing	control	framework. E1	prototyping	activities	for	
the	COI and	UIF are	described	in	separate	reports.

2. SCHEDULE

This	report	summarizes	the	processing	control	prototyping	work	completed	
during	the	three-month	period	from	December	2013	to	February	2014,	based	on	
the	following	schedule.

Period Activity

December 2013 OSS/COTS survey

January – February 2014 Initial Exploratory Prototyping

DECEMBER 2014

SAND-xxxx Page 9 of 42

3. MOTIVATION

Prototyping	provides	input	critical	in	the	definition	of	the	system	architecture,	
supporting selection	of	core	software	development	languages	and	technologies,	
identification	of	architecture	constraints	&	assumptions,	and	definition	of	high-
level	design	patterns. In	addition,	the	prototyping	activity	provides	a	foundation	
for	development	of	the	executable	architecture	deliverable.	

4. PROCESSING CONTROL FRAMEWORK

4.1. Definition

The	processing	control	framework is	a	software	mechanism	providing for	the	
definition,	configuration,	execution	and	control	of	system processing	
components,	supporting	both	automated	and	interactive	analysis	processing.	
The	processing	control	framework	includes	the	following	elements:

1. An	interface	for	defining	automated	processing	components	&	processing	
topologies

2. A	runtime	environment	supporting	deployment,	execution,	monitoring	
and	control	of	processing	topologies

Note	that	the	processing	control	framework	may	encompass	multiple	solutions	
supporting	different	types	of	processing	within	the	automated	and	interactive	
analysis	workflows	(e.g.	near-real-time	vs.	batch	&	interactive	processing	
models).

4.2. Design Goals

 Provide	a	fault-tolerant,	horizontally	scalable	processing	model

 Provide	or	support	a	means for	defining	and	configuring	processing	
sequences

 Provide	an	interface	abstraction	to	facilitate	integration	of	new	processing	
algorithm	implementations

 Provide	a	messaging	framework	for	communication	of	data	and	processing	
control	information	among	processing	components

 Support	processing	components	implemented	in	the	languages to	be defined	
for	the	modernized	system

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 10 of 42

4.3. Constraints

 COTS:	Prefer	Open	Source	Software	(OSS)	and	other	Commercial	Off-The-
Shelf	(COTS)	solutions	to	custom	software	development	where	available.

 Standards:	Prefer	solutions	based	on	open	standards	wherever	possible.

4.4. Iteration E1 Prototyping Activities

Iteration	E1	prototyping	activities	focused	on	surveying	COTS	software	solutions	
(principally	open	source	software)	addressing	the	requirements	and	constraints	
identified	thus	far	for	the	processing	control	framework.	Candidate	solutions	
were	identified	through	online	research	into	available	COTS/open	source	tools,
and	through	discussions	with	other	SNL	project	teams	knowledgeable	in	COTS	
solutions	for similar	applications.

Note	that	the	survey	results	presented	here	are	not	exhaustive;	they	represent	
an	initial	effort	constrained	to the	available	E1	schedule	and	staffing	resources.	
Identification	and	evaluation	of	candidate	software	solutions	is	intended to	be an	
ongoing	activity	during	the	elaboration	phase,	as development	of	the	
architecture	definition	and	executable	architecture	prototype progress.	 Section	
0 identifies	additional	survey	work	scheduled	for	iteration	E2	and	beyond.

The	survey	effort	included	a	first-order	assessment	of	candidates to	eliminate	
those	solutions	not	well	suited	to	the	US	NDC	and	IDC	applications.	Additional	
investigation,	including	limited	exploratory	prototyping,	was	conducted	for	
promising candidates	not	eliminated	as	part	of	the	survey.	Similar	follow-on	
investigations	may be	conducted	for	other	candidates	as	part	of	future	work.

4.4.1. Initial COTS Survey

The	candidates	surveyed as	part	of	the	E1	prototyping	work	can	be	organized	
into	four categories:

1. Stream	Processor	Frameworks

Stream	processing	frameworks	are	largely	focused	on	providing	
infrastructure	for	real-time	data	analytics	on	unbounded	streams	of	
continuously	arriving	data.		They	facilitate	real-time,	rather	than	batch	
mode,	cluster	based	parallel	computation.		The	stream	processing	
frameworks	surveyed	are	Apache	Storm [1],	Apache	S4 [2],	and	Apache	
Samza [3].

2. Java	Application	Frameworks

The	Java	EE	[24]	and	Spring	[25]	application	frameworks	provide	general	
support	for	the	development,	configuration, deployment	and	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 11 of 42

management	of	scalable,	secure,	distributed	applications,	including	both	
automated	and	interactive	processing.	Both	frameworks	are	widely	used	
in	industry,	and	are	well	suited	for	the	development	of	server-side	
applications.

3. Enterprise	Service	Bus	Frameworks

Enterprise	Service	Bus	implementations	provide	general	support	for	
systems	built	using	Service	Oriented	Architecture	(SOA).		ESBs can	be	
thought	of	as	providing	services	used by	the	primary	system	services.		
The	WS02	ESB	[5]	was	surveyed	for	this	prototype.		Another	ESB,	Mule
[6],	was	used	in	the	SOA	proof	of	concept	project	completed	during	
Inception	Iteration	2.

4. Complex	Event	Processors

Complex	Event	Processors	are	similar	to	Stream	Processors	as	they	focus	
on	real-time	data	analytics	for	continuously	arriving	data.		Complex	Event	
Processors	are	generally	based	around	a	query	engine	used	to	select	
stream	data	for	processing.		This	approach	lends	itself	to	dynamic	
topologies	that	evolve	with	the	processing	results	and	data	arriving	on	
the	stream	whereas	Stream	Processors	tend	to	use	statically	configured	
topologies	that	are run	on	all	incoming	stream	data.		The	Esper	Complex	
Event	Processor [4]	was	surveyed.

The	candidates	surveyed	reflect	a	move	to	modern	development	languages	
within	the	Java	Virtual	Machine (JVM) ecosystem,	principally	Java.	The	
dominance	of	Java	among	the	candidates	is	a	reflection	of	its	prominence	within	
the	solution	space.

The	candidates also	reflect	an	alignment	to	the	industry	state	of	practice	for	
mission	critical application	development	where	stability	and maturity	are	
important	factors	to	be	balanced	against	cutting	edge	innovation.	Given	the	
required	longevity	of	the	modernized	system,	COTS	solutions	with	greater	
prevalence	and	larger	development	communities	were	preferred	to	newer,	less	
well-established	offerings.

Candidates	were	assessed	based	on	the	quality	and	applicability	of	their	feature	
sets,	as	well	as	their	maturity	and	the	apparent	strength	of	their	
user/development	communities. Survey	results	are	summarized	for	each	
candidate	in	the	following	sections.

4.4.1.1. Stream Processor Frameworks

The	three	Stream	Processing	Frameworks	surveyed	approach	the	problem	of	
real-time	data	analytics	for	streams	of	incoming	data	in	similar	ways.		Each	of	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 12 of 42

the	products	was	actively	developed	by	well-known	internet	companies, and	
each	are currently	open	source	projects	managed	by	Apache.		Because	the	
products	are	so	similar,	differentiating	among	them	involves	down	selection	
based	on	either	specific	implementations	of	a	key	feature	or	based	on	qualities	
like	industry	adoption,	user	support,	or	potential	for	longevity.

4.4.1.1.1. Apache Storm

Apache	Storm	is	an	open	source	project	originally	released	to	GitHub	by	Twitter	
in	September	2011.		It	has	been	managed	as	an	Apache	Incubator	project	since	
September	2013.		Storm	is	currently	and	actively	under	development.		Storm	
0.9.01,	released	in	December, 2013,	was	used	for	this	prototype.

Storm	processing	is	organized	as	a	topology	(i.e.	a	data	flow	graph)	of	spouts that	
provide	data	and	bolts	that	perform	processing.	Figure	1 depicts	a	simple	Storm	
topology.		While	Storm	runs	in	the	JVM,	it	has	several	built	in	features	supporting	
development	in	non-JVM	languages.		The	processing	topologies	used	by	Storm
are	defined	using	a	language	independent	format	(Apache	Thrift [12])		that
allows	Storm	topologies	to	be	developed	in	a	wide	range	of	programming
languages.		Storm	also	has	built-in	support	for	accessing	spouts and bolts
developed	using	non-JVM	languages through	the	multilang	protocol.

Figure 1. Storm topologies are directed graphs where the edges represent data tuples flowing
between spouts and bolts. 1

Storm	has	a	pluggable	messaging	system	with	existing	implementations	for	
ZeroMQ [10] and	Netty [11].		Even	though	these	messaging	systems	do	not	have	
the	strong	reliability	guarantees	of	projects	like	Kafka	[7]	and	Zookeeper [9],	
Storm	provides	a	variety	of	processing	guarantees	that	include	“all	data	is	
processed	at	least	once”	and	“all	data	is	processed	exactly	once”.		Processing	
components	written	by	users	shoulder	some	of	the	bookkeeping	responsibilities	
to	achieve	“at	least	once”	processing	guarantees	as	Storm	requires	explicit	
acknowledgement	when	bolts	finish	processing	a	tuple.		“Exactly	once”	

																																																												
1 Reproduced	from	the	Storm	tutorial	(http://storm.incubator.apache.org/documentation/Tutorial.html),	
which	is	available	on	the	Apache	Software	Foundation’s	Storm	website	[1].

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 13 of 42

processing	guarantees	are	achieved	through	a	separate	topology	definition	API	
(known	as	Trident)	that	does	not	require	bookkeeping	in	client	codes.

Storm	provides	a	custom	cluster	resource	management	system.		This	system	
uses	Zookeeper	to	coordinate	cluster	nodes	and	is	resilient	to	node	and	process	
failures.		Resource	allocation	is	defined	statically	but	can	be	updated	dynamically	
using	a	command	line	interface.		Since	this	requires	manual	intervention,	Storm	
does	not	provide	automatic,	dynamic,	processing	elasticity.

Storm	has	experienced	high	adoption	in	the	open	source	community	and	is	used	
by	several	prominent	companies	for	data	analytics	tasks.

4.4.1.1.2. Apache S4

Apache	S4	is	an	open	source	project	released	by	Yahoo	in	October,	2010.		It	has	
been	an	Apache	Incubator	project	since	September	2011.

S4	topologies	are	defined	in	Java	code	as	a	graph	of	Processing	Elements	and	
Data	Streams	connecting	the	Processing	Elements.		

S4	uses	Zookeeper	for	the	communication	layer,	which	provides	persistent	and	
durable	messaging	to	S4.		S4	processing	topologies	are	written	in	Java.		S4	
implements	a	check-pointing	system	to	provide processing	guarantees	and	to	
prevent	data	loss.

S4	uses	Apache	Helix [13] for	cluster	resource	management,	load	balancing,	
dynamic	resource	scalability,	and	fault	tolerance.		

Despite	being	available	publicly	for	several	years,	S4	has	not	fostered	
widespread	interest	in	the	open	source	community.			This	fact	brings	long	term	
support	and	development	of	the	project	into	question.		

4.4.1.1.3. Apache Samza

Apache	Samza is	an	open	source	project	released	publically	in	September,	2013.		
It	was	originally	developed	by	LinkedIn	to	support	their	real-time	data	analytics	
needs.		

Samza	topologies	are	defined	in	configuration	files.		There	is	no	built-in	support	
for	running	non-Java	components	within	processing	topologies.		Samza	can	
provide	guarantees	that	“all	data	is	processed	at	least	once”	or	“all	data	is	
processed	exactly	once”	by	a	topology	without	exposing	the	bookkeeping	tasks	
or	states	to	client	codes.

Samza	uses	Apache	Kafka	for	messaging.		Kafka	provides	reliable	messaging	with	
guaranteed	message	delivery.		Kafka	is	itself	a	distributed	application	and	
provides	parallel	message	processing,	load	balancing,	and	certain	message	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 14 of 42

delivery	order	guarantees.		Since	Kafka	messages	are	backed	by	Zookeeper,	
which	writes	to	disk,	Samza	nodes	or	processes	can	fail	without	losing	messages	
and	without	messages	that	are	pending	delivery	overwhelming	the	available	
system	memory.		Keeping	all	messages	persisted	to	disk	facilitates	data	replay	
through	Samza	topologies.		

Samza	uses	Apache	YARN	[8]	for	resource	management.		YARN	is	a	compute	
cluster	resource	management	and	task	scheduling	utility	originally	developed	
for	the	popular	Hadoop	map-reduce	batch	processing	project.	Samza	benefits	
from	YARN’s	load	balancing,	node	management,	and	process	and	resource	
isolation	features.		Samza	does	not	support	dynamic	elasticity	for	cluster	
resource	allocation.

Samza	has	not	been	available	as	open	source	software	long	enough	to	accurately	
gauge	future	community	interest,	support,	or	long-term	viability.		

4.4.1.2. Java Application Frameworks

The	Java	application	frameworks	surveyed	in	E1	represent	the	two	most	
prevalent	enterprise	java	application	development	solutions:	Java	Enterprise	
Edition	(Java	EE),	and	Spring.	

Java	EE	and	Spring	were	included	in	the	survey	because	both	provide	
technologies	for	the	development	of	modular	processing	architectures
composed	of	loosely-coupled,	distributed	processing	components	interacting	
through	well-defined	interfaces.	Java	EE	and	Spring	provide	a	very	similar	set	of	
capabilities,	and	generally	follow	similar	design	patterns.	Spring	has	influenced	
the	recent	evolution	of	a	number	of	Java	EE	standards.

It	should	be	noted	that	both	Java	EE	and	Spring	provide	many	additional	
capabilities	of	interest	to	the	modernized	system architecture	that	fall	outside	
the	scope	of	the	processing	control	framework	and	so	are	not	addressed	here.	
One	example	relates	to	data	persistence	abstractions	(e.g.	Java	Persistence	API,	
Object	Relational	Mappings	&	Data	Access	Objects),	which	are	addressed	
separately	as	part	of	the	Common	Object	Interface	(COI)	prototyping	effort.	
Another	example relates	to	client presentation	frameworks	(e.g.	Java	Server	
Faces,	Struts	and	Spring	Model-View-Controller),	which	are	addressed	as	part	of	
the	user	interface	framework	prototyping	effort.

Both	Java	EE	and	Spring	are	typically	deployed	using	an	application	server,	
which provides	an	implementation	of	the	core	functions	of	the	application	
framework.	An	assessment	of	the	most	prominent	application	servers	is	
included	in	Section	4.4.1.2.3.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 15 of 42

4.4.1.2.1. Java EE

Java	EE	is	the	standard	enterprise	Java	computing	platform.	It	provides	a	widely-
supported,	open	standard	enabling	the	development	of	vendor	and	platform-
agnostic	software.	Java	EE	specifies	a	comprehensive	set	of	technology	standards	
addressing	multi-tiered,	scalable,	reliable	Java applications.	Among	the	
standards,	the	E1	survey	focused	on	those	related	to	enterprise	application	
development,	including:

 Enterprise	Java	Beans	(EJB) provide	an	architecture	for	the	development	and	
deployment	of	component-based	applications.

 Contexts	&	Dependency	Injection	(CDI)/Dependency	Injection	for	Java
provide a	flexible	application	configuration	model	minimizing	coupling	
between	components.

 Interceptors provide	support	for	managing	Aspect	Oriented	Programming	
(AOP) functions	such	as	logging,	auditing,	and	profiling.

 Java	Transaction	API	(JTA) provides	support	for	transactions	within	the	
application.

 Java	Messaging	Service	(JMS) supports	messaging	between	processing	
components	using	reliable,	asynchronous,	loosely	coupled	communication

Java	EE	is	highly	stable,	mature	technology	with	large	and	well	established	user	
and development	communities.

4.4.1.2.2. Spring Framework

The	Spring	framework	is	an	open	source	application	framework	for	the	Java	
platform.	Whereas	Java	EE	provides	a	set	of	standards	for	which	multiple	
implementations	are	available,	the	Spring	framework	provides	a set	of	concrete	
technologies	with many	capabilities similar	to	those	available	in	Java	EE	
implementations.	Unlike	Java	EE, the	Spring	framework	is	not	based	on	open	
standards.

Among	the	Spring	framework	technologies,	the	E1	survey	focused	on	those	
related	to	enterprise	application	development,	including:

 Spring	Inversion	of	Control	(IoC)	Containers provide an	architecture	for	
the	development	of	component-based	applications,	as	well	as	a	flexible	
application	configuration	model	similar	to	Java	EE	EJBs	and	CDI.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 16 of 42

 Spring	Aspect	Oriented	Programming	(AOP)/AspectJ,	which provide
support	for	managing	Aspect	Oriented	Programming	(AOP)	functions	
similar	in	capability	to	Java	EE	Interceptors.

Support	for	other	relevant	capabilities addressed	by	the	Java	EE	standard	(e.g.	
transaction management, messaging) are	provided	through	integrations	with	
third	party	solutions, including	Java	EE	implementations	of	JTA	and	JMS.

The	Spring	framework	provides	an	alternative	to	Java	EE	for	the	development	of	
Java applications.	As	with	Java	EE	implementations,	the	Spring	framework	is	
highly	stable,	mature	technology	with	large	and	well	established	user	&	
development	communities.

4.4.1.2.3. Application Servers

Application	servers	provide	a	runtime	environment	for	the	execution	of	
application	software.	In	the	case	of	Java,	the	application	server acts	as	an	
extension	of	the	JVM that provides core	application	services	such	as	support	for	
connection	pooling,	clustering,	fail-over,	and	load-balancing.	

A	number	of	open	source	and	commercial	application	servers	are	available	
which	provide	support	for	Java	EE	and/or	Spring	applications.	In	the	case	of	Java	
EE,	these	applications	provide	implementations	of	the	Java	EE	standards.	In	the	
case	of	Spring,	they	provide	an	enhanced	runtime	environment	for	applications	
built	on	the	Spring	framework.

It	should	be	noted	that	both	Java	EE	and	Spring	applications	can	be	developed	to	
execute	outside	of	the	application	server.	This	capability	is	provided	by	default	
as	part	of	the	Spring	framework.	Java	EE	provides	an	embedded	container	
accessible	from the	Java	Standard	Editions	(SE)	environment	that	implements a	
subset	of	Java	EE	standards,	including	a	light-weight	EJB	implementation,	as	well	
as	support	for	transactions,	security	and	AOP	concerns	(interceptors).

The	most	prevalent	application	servers	providing	support	for	Java	and/or	Spring	
are	described	briefly	in	the	sections	below.

4.4.1.2.3.1. Wildfly

Wildfly [26,	27],	formerly	known	as	JBoss	AS, is	an	application	server	developed	
by	the	JBoss	division	of	Red	Hat.	Wildfly	provides	full	support	for	the	latest	Java	
EE	standards	(Java	EE	7),	as	well	support	for	deployment	of	Spring	applications.	
Wildfly	is	free	and open	source	software. Red	Hat	provides	optional	commercial	
support	for	JBoss	Enterprise	middleware	on	a	subscription	basis.	Wildfly	is	a	
mature,	stable	and	widely	adopted	solution [29] that	has	been	under	active	
development since	1999.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 17 of 42

4.4.1.2.3.2. GlassFish

GlassFish	[14]	is	an	application	server	originally	developed	by	Sun	Microsystems	
and	currently managed	by	the	Oracle	Corporation.	Glassfish	is	the	reference	
implementation	of	Java	EE,	and	provides	complete	support	for	the	Java	EE	
standards.	It	also	provides	support	for	deployment	of	Spring	applications.	
GlassFish	is	open	source	software..	A	commercial	version	known	as	Oracle	
GlassFish	Server	is	also	currently	provided	by	Oracle.

In	2013,	Oracle	announced	that	it	will	discontinue	commercial	support	for	
GlassFish.	Although	the	community	version	will be	supported	at	least	through	
version	5 (the	current	version	is 4)	and	will	serve	as the	reference	
implementation	through	at	least	Java	EE	8	(the	current	version	is 7), the	longer	
term	future	of	GlassFish	is	uncertain.

4.4.1.2.3.3. Apache Tomcat

Apache	Tomcat	[15]	is	a	web	server	developed	by	the	Apache	Software	
Foundation	(ASF).	Although	it	is	often	considered	together	with	Java	EE	
application	servers	owing	to	its	support	for	the	Java	Servlet	and	JSP	standards,	it	
does	not	provide	full	support	for	the	Java	EE	standards,	notably	excluding	
support	for	Enterprise	Java	Beans2.	Tomcat	does	provide	support	for	
deployment	of	Spring	applications. Tomcat	enjoys	a	large	user	base	and	
development	community;	it	is	the	most	widely	used	web	application	server	on	
the	market [29]	and	presents	a	compelling	environment	for	Spring	applications.	
Tomcat	is	free	and	open	source	software.

4.4.1.2.3.4. Jetty

Jetty [16] is	a	web	server	project	developed	as	part	of	the	Eclipse	Foundation.	As	
with	Tomcat,	Jetty	it	is	often	considered	together	with	Java	EE	application	
servers	owing	to	its	support	for	the	Java	Servlet	and	JSP	standards;	however	it	
does	not	provide	full	support	for	the	Java	EE	standards,	notably	excluding	
support	for	Enterprise	Java	Beans.	It	does	provide	support	for	deployment	of	
Spring	applications.	Jetty	enjoys	a	large	user	base,	and	its	popularity	is	on	the	
rise	[29]. Jetty	is	free	and	open	source.

4.4.1.2.3.5. WebLogic

WebLogic	Server	[17]	is	a	proprietary	Java	EE	platform	developed	by	the	Oracle	
Corporation that	provides	a	number	of	large-scale	enterprise	solutions,	
including	a	Java	EE	application	server,	web	portal,	Enterprise	Application	

																																																												
2 Apache	provides	a	Java	EE	compliant	application	server	known	as	TomEE,	which	combines	Apache	Tomcat	
with	additional	Java	EE	support,	including	OpenEJB,	OpenJPA	and	others.	TomEE	is	a	recent	offering	(2012)	
and	has	yet	to	establish	a	significant	user	community	beyond	that	of	Tomcat.	It	was	not	evaluated	as	part	of	
the	E1	survey.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 18 of 42

Integration	(EAI)	platform,	transaction	server	(Tuxedo),	telecommunication	
platform	and	web	server.	WebLogic Server is	a	robust,	mature	and	
comprehensive	solution	for	large-scale	enterprise	applications.	As	with IBM	
WebSphere,	it	is considered	to	be	a	more	complex	and	heavy	weight	solution
than	the	other	application servers	surveyed [28].

4.4.1.2.3.6. WebSphere

WebSphere	[18]	is	a	proprietary	suite	of	enterprise	application	integration	
middleware	developed	by	IBM.	At	the	center	of	the	WebSphere	product line is	
the	WebSphere	Application	Server,	which	provides	a	robust,	mature	&	
comprehensive	solution	for	large-scale	enterprise	applications.	As	with	Oracle’s	
WebLogic	Server,	the	WebSphere	application server	is	considered	to	be	a	more	
complex	and	heavy-weight	solution	than	the	other	application	servers	surveyed	
[28].	

4.4.1.2.3.7. Conclusions

Overall,	Java	EE	and	Spring	provide	very	similar	capabilities for	the	development	
of	Java	applications.	Both	are	mature	and	stable	technologies.	Spring	is	more	
widely	used	than	Java	EE;	however	both	enjoy	a	large	user	base	and	developer	
community	[29].

Standardization	presents	an	important	distinction	between	the	two.	Java	EE	is	a	
widely-supported,	open	standard	enabling	the	development	of	vendor	and	
platform-agnostic	software.	In	contrast,	Spring	is	a	non-standard,	open-source	
solution	developed	and	maintained	by	a	single	commercial	vendor.3 Spring	has	
significantly	influenced	the	Java	EE	standard,	and	is	considered	by	some	to	be	a	
de facto	standard.

All	of	the	application	servers	considered	in	the	E1	survey	are	mature,	robust	
products.	As	shown	in	Figure	2, Tomcat	is	the	most	widely	used	of	the	servers	
assessed.	However,	Tomcat	does	not	include	support	for	a	number	of	important	
Java	EE	standards,	most	notably	EJBs.	Tomcat	is	compelling	as	a	Spring	
deployment	technology.	Among	the	application	servers	providing	full	Java	EE	
support,	Wildfly	(formerly	JBoss	AS)	is the	most	widely	used,	making	it	a	
compelling	choice	for	Java	EE	applications.	Although	GlassFish	is	the	current	
reference	implementation	of	Java	EE,	Oracle’s	discontinuation	of	commercial	
support	calls	into	question	its	long-term	viability.

WebSphere	and	WebLogic	are	intended	for	large-scale	enterprise	application	
development, and	thus	are	likely	more	complex	and	heavy	weight	solutions	than	
required	for	the	modernized	system architecture.

																																																												
3 Spring	is	currently	developed	by	Pivotal	(www.gopivotal.com).

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 19 of 42

Figure 2. Java Application Server Usage Based on 2012 Developer Survey4

4.4.1.3. Enterprise Service Bus

ESBs	are	general	purpose	integration	solutions	supporting	service	oriented	
systems.		ESBs	are	typically	used	in	systems	where	there	is	a	need	to	integrate	a	
variety	of	products	that	were	created	in	disparate	programming	languages,	
which	run	on	different	types	of	hardware,	or	which	are	provided	by	separate	
organizations.		The	common	theme	in	this	scenario	is	there	may	not	be	a	
common	system	architecture	used	when	implementing	the	individual	services	
and	yet there	is	a	need	and	benefit	to	using	them	together.		The	ESB’s	goal	is	to	
bridge	the	gap	between	such	heterogeneity.		ESBs	are	most	commonly	used	with	
web	services	and	were	studied	as	part	of	a	SOA	proof	of	concept	project	
completed	during	Inception	Iteration	2.		MuleESB	was	used	in	that	project	and	
therefore	was	not	surveyed	as	part	of	exploratory	prototyping.		In	general,	
MuleESB	provides	similar	features	to	those	studied	in	the	WS02	survey.

4.4.1.3.1. WS02

WS02	is	a	Java	ESB	based	on	Apache	Synapse.		The	first	version	of	WS02	was	
release	in	2007,	though	Apache	Synapse	has	been	available	since	2005.

WS02	provides	end	point	(i.e.	service)	failover	and	load	balancing	and	can	be	
integrated	with	a	separate	WS02	product,	the	WS02	Elastic	Load	Balancer,	to	
achieve	elastic	load	balancing	at	the	level	of	either	the	ESB	or	of	individual	end	
points.		Support	for	implementing	data	processing	guarantees	is	available	
through	transactional	messaging	which	can	be	used	to	guarantee	message	
delivery.

																																																												
4 Reproduced	from	the	article	“Developer	Productivity	Report	2012:	Java	Tools,	Tech,	Devs	&	Data”	By	Oliver	
White.	See	the	References	section	for	full	citation.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 20 of 42

WS02	facilitates	processing	topology	definitions	through	a	type	of	end	point	
referred	to	as	a	mediation	sequence.		When	a	mediation	sequence	receives	a	
message	it	will	execute	a	sequence	of	other	mediators	in	a	user-defined	order.		
Built	in	mediators	are	available	for	common	tasks	such as	sending	messages	to	
services,	aggregating	messages	received	from	services,	providing	conditional	
message	routing	to	services,	and	providing	priority-based	service	execution.		
Custom	mediators	can	be	written	by	users	for	other	processing	tasks.

Since	ESBs	provide	a	central	hub	facilitating	service	integration,	distributed	
parallel	processing,	support	for	multiple	programming	languages,	secure	
messaging,	and	interoperability	with	persistence	mechanisms, all	are	possible	
and	supported	at	various	levels	by	WS02	and	other	full	featured	ESBs.

4.4.1.4. Complex Event Processor Frameworks

4.4.1.4.1. Esper

Esper	is	a	real-time	data	processing	system	that	works	on	streams	of	incoming	
data.		Esper,	like	other	complex	event	processors,	differentiates	itself	from	the	
stream	processors	(e.g.	Storm,	Samza,	S4)	in	that	the	programming	model	is	
based	on a	specialized	query	language	enabling	selection	of subsets	of	data	from	
the	incoming	stream	for	processing	rather	than on processing	all	arriving	data	
with a	fixed	topology.

Esper	is	open	source	and	has	been	under	development	since	2004.		It	is	managed	
by	EsperTech	and	has	seen	adoption	by	a	number	of	prominent	companies	
(including	PayPal	and	Raytheon).		EsperTech	provides	an	enterprise	version	of	
Esper	that	supports	clustering.		A	separate	project,	EsperHA,	provides	high	
availability	and	guarantees	no	data	loss.

Esper	is	built	around	a powerful,	efficient,	and	expressive	query	engine.	Queries	
executed	against	the	engine	can	be	likened	to database	queries	occurring	on	a	
non-persistent,	transient	stream	of	incoming	data.		Data	selected	for	processing	
can	be	injected	back	into	the	stream	for	exposure	to	other	selection	queries.		
Processing	topologies	in	Esper	would	likely	be	crafted	in	client	code	as	a	series	
of	data	selection	queries.		Even	though	Esper’s	query	engine	is	analogous	to	
those	provided	by	databases,	Esper	itself	does	not	provide	a	data	persistence	
mechanism.	

4.4.2. Exploratory Prototyping

Based	on	the	results	of	the	initial	survey,	two	of	the	candidates	were	selected	for	
further	investigation	and	exploratory	prototyping	in	the	E1	timeframe:	Apache	
Storm	and	Java	EE/Wildfly.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 21 of 42

As	discussed	in	Section	4.4.2.1,	the	feature	set	provided	by	the	stream	processor	
candidates	holds	promise	for	the	processing	control	requirements	of	the	system.	
Storm	was	selected	as	the	most	well-established	and	widely	used	of	the	stream	
processors.	In	contrast,	Samza	is	a new	offering	that	has	yet	to	establish	a	
significant	user	base	and	the	S4	project	appears	to	be	largely	dormant.	

ESB	candidates	were	not	investigated	further,	given	that	that	these	technologies,	
and	MuleESB	in	particular, were	assessed	as	part	of	the	SOA proof	of	concept	
project	completed during	Inception	Iteration	2.

The	event	query	paradigm	central	to	the complex	event	processor	solutions	was	
judged	to	be	too	specialized	for	the	more	general	processing	needs	of	the	
system’s automated	and	interactive	analysis	processing. Thus,	these	candidates	
were	not	investigated	further	in	E1.

A	Java	EE	implementation	was	selected	for	further	investigation	rather	than	the	
Spring	Framework	based	on	the	stated	preference	for	solutions	built	on	open	
standards.	As	discussed	in	Section	4.5,	further investigation	of	the	Spring	
framework	has	been	identified	as	potential	follow-on	work. Wildfly	was	selected	
for	the	Java	EE	exploratory	prototype	as	the	most	widely	used	application	server	
providing	full	Java	EE	support.

Table	2 in	Appendix	A provides	a	summary	comparison	of	feature	sets	between	
the	E1	prototype	candidates	and	existing	systems.	

4.4.2.1. Apache Storm

4.4.2.1.1. Background

Apache	Storm	is	a	framework	that	manages	real-time,	distributed,	fault-tolerant,	
and	multi-language	data	processing	applications.		Storm	is	real-time	as	it	is	
meant	to	process	data	as	it	becomes	available	rather	than	storing	data	for	batch	
processing	at	a	later	time.		Storm	is	distributed	to	support	processing	high	data	
loads	and	to	provide	resilience	to	machine	failures.		Storm	is	fault	tolerant	as	it	
can	provide	both	“at	least	once”	and	“exactly	once”	processing	guarantees	for	
each	piece	of	data	it	processes.		Storm	is	multi-language	since	the	fundamental	
definitions	for	processing	components	and	processing	topologies	are	language	
independent.		

4.4.2.1.1.1. Processing Model

A	Storm	topology	is	a	directed	graph	(either	cyclic	or	acyclic)	where	each	node	is	
either	a	spout or	a	bolt.		Storm	uses	spout nodes	to	emit	data	into	topologies,	so	
these	nodes	have	zero	incoming	edges	and	one	or	more	outgoing	edges	to	other	
nodes	in	the	topology.		Spout	nodes	will	typically	interface	with	files	or	
applications	external	to	the	Storm	topology	to	access	the	data	they	emit.		Storm

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 22 of 42

uses	bolt nodes	to	process	data	within	a	topology.		Since	bolts can	emit	their	
results	into	the	topology	for	further	processing,	bolts have	one	or	more	incoming	
edges	and	zero	or	more	outgoing	edges	to	other	nodes	in	the	topology.		Storm	
passes	data	tuples along	the	edges	between	nodes.		Tuples can	contain	any	
number	of	data	elements	and	there	are	no	limitations	on	data	types	except	that	
all	data	types	must	have	a	serialization	so	that	Storm	can	pass	data	between	
processes	and	machines.

Storm	exploits	two	types	of	parallel	processing.		First,	multiple	spouts and	bolts
in	a	topology	can	simultaneously	process	different	tuples.		Second,	Storm	can	
replicate	spouts and	bolts to	multiple	processing	tasks.		This	allows	simultaneous	
execution	of	the	same	underlying	spout or	bolt code	on	different	data	tuples.

4.4.2.1.1.2. Clustering

Storm	topologies	run	on	Storm	clusters.		Storm	clusters	contain	a	master	node	
and	one	or	more	worker	nodes.		The	master	node	runs	Storm’s	Nimbus daemon	
which	is	responsible	for	distributing	the	spout and	bolt code used	within	
topologies	to	the	worker	nodes,	assigns	tasks	to	workers,	and	monitors	the	
worker	nodes	for	failures.		Each	worker	node	runs	the	Supervisor daemon	which	
receives	data	arriving	at	the	machine	and	assigns	it	to	worker	processes.		Each	
worker	process	contains	one	or	more	Executor threads,	and	each	Executor runs	
one	or	more	tasks.		A	task is	either	a	spout or	a	bolt.		The	Supervisor is	also	
responsible	for	starting	and	stopping	worker	processes	on	the	machine.		

Storm has	a	custom	cluster	manager	that	determines	which	worker	nodes	
perform	which	processing	tasks.		As	discussed	in	section	4.4.2.1.3.3,	Storm	
supports	some	user	specified	groupings	that	allow	clients	to	indicate	where	a	
component	should	run	relative	to	other	components.		Figure	3 shows	a	simple	
Storm	topology	with	one	spout	and	two	bolts running	on	a	cluster	with	four	
worker	nodes.		Each	worker	process	has	several	Executor	threads	which	run	
processing	tasks.		The	tasks	are	color	coded	according	to	which	spout	or bolt they	
run.		Storm	assigns	the	work of	each	spout	and	bolt	to	one	of	the	available	tasks	
as	data	becomes	available	for	processing.		Storm’s	ability	to	distribute	a	
topology’s	work	in	this	manner	is	how	it	provides	horizontal	scalability.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 23 of 42

Figure 3. Mapping Storm processing topologies to clusters5

Storm	Nimbus and	Supervisor daemons	use	Zookeeper	and	the	local	file	system	
on	each	cluster	node	to	store	processing	states.		Zookeeper	is	used	to	coordinate	
the	runtime	cluster	configuration	and	state	parameters	required	to	determine	
how	topologies	are	distributed	across	machines	and	how	the	current	work	is	
distributed	across	the	worker	nodes.		Storm	uses	the	local	file	system	to	store	
larger	chunks	of	distributed	data,	such	as	topology	definition	files.		Storing	
processing state	outside	of	Storm	allows	the	Storm	daemons	and	Storm	workers	
to	independently	fail	and	restart	without	causing	failures	to	the	running	
topologies.		Zookeeper	also	runs	on	a	cluster,	providing	a	layer	of	data	resilience	
and	availability	in	the	presence	of	machine	failures.		Storm	does	not	expose	these	
persistence	mechanisms	to	clients,	so	client	codes	are	responsible	for	handling	
their	data	management	and	persistence	needs	independent	of	Storm.

4.4.2.1.1.3. Fault Tolerance

Storm	implements	a	reliability	model	that	can	guarantee	all	data	emitted	from	a	
spout	is	processed	by	a	topology.		However,	if	Storm	is	used	in	a	broader	system	
where	a	spout	is	a	consumer	accessing	data	from	an	external	producer,	Storm	
cannot	guarantee	that	all	data	created	by	the	producer	are	consumed	by	the	
spout	or	that	all	data	consumed	by	the	spout are	emitted	into	the	topology.			
These	kinds	of	processing	guarantees	are	attainable	if	the	Storm	spout has	
durable	access	to	external	data.		These	types	of	processing	guarantees	are	
available	in	the	exploratory	prototype	through	use	of	a	Storm	spout	that	

																																																												
5 Adapted	from	Michael	Noll’s	Understanding	the	Parallelism	of	a	Storm	Topology (http://www.michael-
noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/) [31].

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 24 of 42

consumes	data	from	the	Apache	Kafka	fault	tolerant	producer-consumer	
messaging	framework.

4.4.2.1.1.4. Process Monitoring

Storm	provides	several	process	monitoring	and	diagnostic	tools.		Command	line	
tools	are	used	to	start,	stop,	rebalance,	and	perform	simple	introspection	on	the	
Storm	cluster	and	the	topologies	it	is	running.		Storm	also	has	a	web	client	
providing	information	on	cluster	resource	availability,	consumption,	and	
uptimes;	topology	resource	consumption	and	uptimes;	and	worker	node	
uptimes.		Additionally,	all	Storm	daemons	and	worker	processes	write	detailed	
log	files,	including	status	updates	and	exception	stack	traces,	to	a	common	
directory.		

4.4.2.1.2. Cluster Configurations

The	Apache	Storm	exploratory	prototyping	effort	involved	configuring	a	two	
node	Storm	cluster	capable	of	running	a	variety	of	Storm	processing	topologies.		
One	node	in	the	two	node	cluster	was	configured	as	both	a	master	and	a	worker	
while	the	second	node	was	exclusively	a	worker	node.		The	master	node	
therefore	ran	Storm	Nimbus,	Storm	Supervisor,	Zookeeper,	and	Kafka	while	the	
worker	node	only	ran	Storm	Supervisor.		An	operational	cluster	would	likely	
involve	multiple	nodes	forming	a	Zookeeper	cluster,	multiple	nodes	forming	a	
Kafka	cluster	(if	Kafka	was	used),	and	additional	Supervisor nodes.		Storm	
Nimbus cannot	be	distributed,	so	it	must	run	on	a	single	node	regardless	of	
cluster	size.

Adding	a	new	worker	node	to	a	Storm	cluster	is	a	straightforward	process	that	
minimally	involves	installing	Storm,	installing	Storm’s	messaging	library,	and	
editing	a	Storm	configuration	file	with	references	to	the	Zookeeper	and	Nimbus	
machines.		Since	Storm is	designed	to	immediately	close	the	JVM,	and	therefore	
close	the	Supervisor,	whenever	an	exception	occurs	it	is	also	recommended	to	
run	Storm	under	process	supervision.		The	prototype	machines	were	configured	
to	use	the	process	supervisor	named	supervisor.			Process	supervision	was	
configured	to	start	the	Storm	Supervisor on	the	worker	node	and	Storm	Nimbus,	
Storm	Supervisor,	Kafka,	and	Zookeeper	on	the	master	node.		Since	Storm	can	
restart	worker	tasks	after	failure	and	the	process	supervisor	can	restart Storm	
after	it	fails,	running	Storm	under	process	supervision	provides	a	durable	
processing	cluster.		A	convenient	side	effect	of	process	supervision	is	all	
processes	required	to	run	the	master	and	worker	nodes	are	started	when	the	
process	supervisor	is	started,	so	only	one	step	per	machine	is	required	to	start	
the	cluster.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 25 of 42

4.4.2.1.3. Topology Configurations

4.4.2.1.3.1. Prototyped spouts and bolts

Each	processing	topology	created	for	this	prototype	consisted	of	three	tasks:	one	
spout task producing	waveform	tuples,	one	bolt	task	consuming	waveform	tuples
and	producing	signal	detection	tuples,	and	one	bolt	task	consuming	signal	
detection	tuples and	producing	event	hypothesis	tuples.		All	of	the	data	produced	
in	these	tasks	was	randomly	generated.		The	tasks	did	not	run	actual	algorithms	
to	detect	signals	or	build	event	hypotheses.		Figure	4 lists	the	Java	code	used	to	
define	these topologies.		The	listing	shows	how	each	Storm	component	is	
assigned	a	textual	identifier	that	is	then	used	to	link	it	to	other	components	(e.g.	
the	“detections”	bolt	received	input	from	the	“waveforms”	spout.		The	numbers	
at	the	end	of	each	setSpout() and setBolt() call	indicate	the	number	of	tasks	
running	the	associated component.

Figure 4. Sample Storm code to define a processing topology.

Two	types	of	waveform	spouts were	created.		The	first	is	a	standalone	Java	
implementation that	generates	and	emits random	waveforms.		The	second	is	a	
Java	implementation	that	consumes	waveforms	from	Kafka	and	emits them	into	
the	topology.		This	spout works	in	conjunction	with	a	Java	application	that	
generates	random	waveforms	and	publishes	them	to	Kafka.

Two	signal	detection	bolts were	created	that	consume	waveforms	and	produce	
signal	detections.		The	first	is	a	Java	implementation	that	emits	random	signal	
detections	on	the	consumed	waveforms.		The	second	is	a	C++	implementation	
performing	the	same	function.

One	event	formation	bolt	was	created	that	consumes	signal	detections	and	
produces	event	hypotheses.		This	bolt has	a	Java	implementation.

Four	types	of	Storm	topologies	were	defined	using	these	spouts and	bolts:

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 26 of 42

Table 1: Topology Definitions

Waveform	
spout

Signal	
Detection	bolt

Event	
Formation	bolt

Topology	A Standalone Java Java

Topology	B Kafka Java Java

Topology	C Standalone C++ Java

Topology	D Kafka C++ Java

4.4.2.1.3.2. Specifying Processing Guarantees

Each	of	the	topologies	in	Table	1 was	defined	using	two	different	reliability	
models.			The	first	group	of	topologies	used	the	default	“at	most	once”	model	
which	guarantees	that	all	data	emitted	into	a	topology	is	processed	no	more	than	
one	time,	but	does	not	guarantee	that	all	data	emitted	into	a	topology	is	
processed.		The	second	group	of	topologies	used	the	“at	least	once”	model	which	
guarantees	that	all	data	emitted	into	a	topology	is	processed	at	least	one	time,	
but	does	not	guarantee	that	the	data	is	only	processed	one	time.		Neither	of	these	
models	guarantees	any	particular	data	processing	order,	so	Storm	may	process	a	
tuple	emitted	into	a	topology	either	before	or	after	subsequent	tuples	emitted	
into	the	topology.		When	the	Kafka	waveform	spout is	used	the	system	can	
additionally	guarantee	that	all	of	the	waveforms	published	to	Kafka	through	the	
external	program	are	consumed	by	the	Kafka	waveform	spout and	emitted	to	the	
topology,	at	which	point	the	Storm	reliability	model	dictates	whether	or	not	the	
waveform	tuples are	guaranteed	to	get	processed	by	the	topology.

Configuring	a	topology	to	use	the	“at	least	once”	reliability	model	was	a	trivial	
change	from	the	“at	most	once”	model	that	only	required	tagging	each	tuple	with	
an	identifier	as	it	was	emitted	to	the	topology	and	subsequently	acknowledging	
each	time	a	bolt	completes	processing	for	a	tuple.		Storm	uses	this	information	to	
keep	track	of	the	potentially	expansive	tuple	graph	stemming	from	each	tuple	
emitted	by	a	spout and	will	reemit	a	tuple	when	it	determines	processing	has	
failed.		Storm	uses	timeouts	to	recognize	unresponsive	nodes,	workers,	or	tasks	
and	automatically	fails	processing	for	their	assigned	tuples.		Storm	users	can	also	
explicitly	fail	tuples	within	their	bolt	implementations.		

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 27 of 42

Storm	can	also	provide	the	stronger	guarantee	of	“exactly	once”	processing	
which	guarantees	each	tuple	emitted	into	a	topology	is	processed	by	the	
topology	a	single	time,	but	does	not	guarantee	that	tuples	are	successfully	
processed	in	the	same	order	they	were	emitted.		Storm	topologies	with	“exactly	
once”	processing	semantics	are	defined	using	Storm’s	Trident	API.		These	
semantics	also	require	a	secondary	database	to	store	the	state	Storm	uses	to	
track	tuple	processing.		Implementing	Trident	topologies	is	therefore	
significantly	different	than	configuring	normal	Storm	topologies	and	was	not	
explored	in	this	prototype.

Storm	topology	definitions	allow	specifying	the	number	of	worker	processes	
running	a	topology,	the	initial	number	of	executor	threads	for	a	particular	spout	
or	bolt,	and	the	total	number	of	tasks	allocated	for	that	spout or	bolt.		Since	
topology	definitions	are	static	these	parameters	place	an	upper	bound	on	the	
cluster	resources	consumed	by	an	executing	topology.		Multiple	topologies	can	
run	simultaneously	on	the	same	cluster,	but	Storm	does	not	provide	a	means	for	
users	to	control	provisioning	specific	worker	nodes	to	specific	topologies.		Storm	
does	provide	a	command	line	tool	to	dynamically	change	the	parallelism	of	a	
running	topology	by	setting	the	number	of	workers	available	to	the	topology	and	
the	number	of	executors	assigned	to	each	spout or	bolt.		Storm	provides	no	built	
in	means	to	automatically	rebalance	topologies,	and	therefore	does	not	provide	
dynamic	processing	elasticity.

4.4.2.1.3.3. Assigning tuples to Processing Tasks

Though	Storm	does	not	allow	specifying	which	nodes	run	which	Storm	
components,	it	does	allow	clients	to	specify	how	the	data	processed	by	each	
component	is	distributed	across	the	tasks	running	that	component.		Clients	
assign	a	textual	name	to	each	spout and	bolt in	the	topology	definition.		These	
names	are	used	to	specify	the	fundamental	data	flow	(e.g.	the	waveform	spout	
provides	input	the	signal	detection	bolt	which	provides	input	to	the	event	
hypothesis	bolt).		The	names	are	also	used	to	inform	Storm	of	how	the	topology	
expects	data	to	be	routed	across	the	individual	tasks	running	each	component	
(e.g.	group	data	output	from	the	waveform	spout such	that	waveform	data	from	a	
station	is	always	processed	by	the	same	signal	detection	bolt	task).		A	client	can	
specify	various	types	of	groupings,	including	that	all	tuples	with	the	same	value	
for	a	particular	field	be	routed	to	the	same	task,	that	tuples	be distributed	
randomly	but	evenly	across	tasks,	that	tuples	be	routed	to	all	tasks,	and	so	on.		

4.4.2.1.4. Type System

Storm	has	a	weak	type	system.		Storm	components	declare	by	name	(not	by	
type)	which	fields	it	will	emit,	but	does	not	specify	which	fields	it	expects	as	
input.		This	allows	Storm	components	to	be	wired	together	in	arbitrary	ways	and	
allows	components	to	accept	different	types	of	tuples	as	input.		Client	codes	that	
create	topologies	are	responsible	for	connecting	components	in	sensible	ways.		

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 28 of 42

Storm’s	Java	APIs	provide	runtime	type	checking	through	the	tuple	accessor	
methods.		

4.4.2.1.5. Multilanguage Support

Storm	topologies	are	implemented	as	Apache	Thrift	structures.		Since	Thrift	has	
bindings	for	most	common	programming	languages	(including	Java,	C++,	C#,	and	
Python)	it	is	possible	to	write	Storm	topologies	using	a	variety	of	programming	
languages.		Since	Storm	runs on	the	Java	Virtual	Machine	and	provides	a	Java	API	
for	building	topologies,	it	is	straightforward	to	write	Storm	code	in	Java	and	
other	JVM	languages.		In	practice,	defining	topologies	in	non-JVM	languages	will	
likely	involve	using	a	topology	building	API	written	in	that	language	to	provide	
an	abstraction	over	the	Thrift	syntax.		For	example,	the	Petrel	open	source	
project	can	be	used	to	create	Storm	topologies	in	Python.		

Storm	supports	spouts and	bolts written	in	non-JVM	languages	through	the	
multilang protocol.		Storm	uses	Java	wrappers	to	communicate	JSON	messages	
over	stdin	and	stdout	with	processes	written	in	non-JVM	languages.		Storm	
defines	the	communication	protocol	and	messaging	format,	which	must	also	be	
implemented	in	the	non-JVM	language.		The	Java	wrappers	define	the	spouts	and	
bolts	for	configuring	in	topologies	and	implement	the	Java	half	of	the	multilang	
protocol.				The	C++signal	detection	bolt	written	for	the	exploratory	prototype	
uses	the	multilang	protocol	by	leveraging	the	open	source StormCPP	
implementation.		One	disadvantage	for	Unix	or	Linux	based	system	is	executable	
files	distributed	by	Nimbus to	cluster	nodes lose their	executable	status.		The	
effect	of	this	is	that	spouts	and	bolts	compiled	as	executable	programs	either	
require	workarounds	to	be	made	executable	or	must	be	distributed	to	the	
cluster	nodes	independent	of	Storm.

A	second	approach	to	accessing	C	or	C++	codes	from	Storm	topologies	is	to	use	
spouts or	bolts accessing	external	executable	code	through	the Java	Native	
Interface.		This	approach	circumvents	Storm’s	multilang	protocol	by	placing	
messaging	responsibility	on	the	implementation.		However,	it	does	not	require	
any	more	Java spout	or	bolt	implementations	than	the	multilang	protocol	and	has	
the	advantages	of	avoiding	JSON	serialization	and	the	potential	to	use	local	
memory	when	passing	parameters	between	the	Java	and	native	codes.

4.4.2.1.6. Serialization and Messaging

Storm	uses	Kryo	to	serialize	and	deserialize	tuples	to	and	from	messages,	but	
defaults	to	using	the	less	efficient	Java	serialization	if	a	Kryo	serialization	cannot	
be	performed	for	an	object.		Client	codes	can	define	specific	Kryo	serializers	to	
use	on	a	class	by	class	basis.		Storm’s	messaging	framework	is	pluggable	with	
existing	implementations	in	ZeroMQ	and	Netty.		Storm	does	not	guarantee	
reliable	messaging	between	nodes.		However,	as	discussed	previously,	Storm’s	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 29 of 42

reliability	model	can	guarantee	that	all	data	emitted	into	the	topology	is	
processed,	even	if	individual	messages	fail.

4.4.2.1.7. Summary

Storm	provides	a	cluster	management	and	distributed	processing	control	
mechanism.		Topology	definitions	and	resource	allocations	are	statically	
configured,	so	all	data	flows	and	parallelism	are	configured	before	running	the	
topology.		Dynamic	but	manual	intervention	is	required	to	update	a	running	
topology’s	resource	allocation.		Storm	natively	supports	processing	components	
built	in	a	variety	of	languages,	but	JVM	languages	seem	easier	to	use	and	it	is	not	
clear	the	JSON	multilang	protocol	provides	much	advantage	over	JNI	when	
accessing	native	codes.		Storm	can	enforce	a	variety	of	processing	guarantees.		As	
a	stream	processor,	it	seems	most	suited	to	continuously	running	processing	
tasks	that	have	little	or	no	critical	path	reliance	on	external	processing.

Storm	has	generated	interest	in	the	open	source	community	and	has	over	8,000	
GitHub	stars.		While	Storm	provides	some	documentation,	much	of	the	support	
required	to	setup,	configure,	and	run	the	prototype	cluster	and	topology	came	
from	online	user	groups	and	third	party	tutorials.		Storm	support	may	evolve	
now	that	it	is	an	Apache	managed	product.

4.4.2.2. Java EE/Wildfly 8

4.4.2.2.1. Background

4.4.2.2.1.1. Containers & EJBs

Java	EE	provides a	modular	component	framework	for	creating	robust,	
distributed	applications.	At	the	heart	of	this	framework is	the	concept	of	a	
container,	which	provides	foundational	services	that	otherwise	would	need	to	be	
implemented	within	the	application	software	(e.g.	transaction	handling,	state	
management,	multi-threading,	resource	pooling).	The	container	also	manages	
the	lifecycle	of	the	contained	application	component	and	supports	dependency	
injection.	Java	EE	specifies	multiple	container	types	based	on	its	multi-tier	
architecture,	including	Application	Client	Containers,	Web	Containers,	and	
Enterprise	Java	Bean	(EJB)	Containers.

Java	EE	specifies	two	types	of	EJBs	that	can	execute	within	the	EJB	container:

1. Session	Beans encapsulate	processing	logic	that	is	invoked	from	client	
views	(local,	remote,	web	services)	as	part	of	a	client	session.	Three	types	
of	session beans	are	defined.

 Stateful	Session	Beans interact	with	a	single	client	and	maintain	
state	information	across	client	calls	for	the	duration	of	a	session.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 30 of 42

 Stateless	Session	Beans can	interact	with	multiple	clients,	but	do	
not	maintain	conversational	state	across	client	invocations.

 Singleton	Session	Beans are	instantiated	once	per	application,	exist	
for	the	lifecycle	of	the	application,	and	provide	concurrent,	shared	
access	across	multiple	clients.

2. Message	Driven	Beans (MDBs)	support	asynchronous	processing of	
messages,	acting	as	JMS	listeners.	MDBs	encapsulate	logic	that	is	executed	
as	part	of	a	message-driven	architecture.

The	E1	exploratory	prototype	focused	on	an	automated processing	architecture	
composed	of	Message	Driven	Beans	executing	within	a	set	of EJB	containers.

4.4.2.2.1.2. Dependency Injection

Dependency	Injection	is	a	central	feature	of	Java	EE	enabling	flexible	
configuration	of	the	application	and	minimal	coupling	between	components.	
Through	dependency	injection,	the	dependencies	between	components	are	
assigned	dynamically	at	runtime,	minimizing	the	need	for	explicit	static	coupling,
and	allowing	for	alternative	dependencies	based	on	the	deployment	context	of	
the	application	(e.g.	allowing	mock	versions	of	dependent	components	within	
test	environments).	Dependency	injection	can	be	specified	using	either	XML	
configuration	or	(more	commonly)	through	the	use	of	Java	annotations	within	
the	source	code. The	E1	exploratory	prototype	incorporated	dependency	
injection	annotations	to	specify	mock	seismic	processing	component
implementations and	JMS	message	topics	for	communication	among	
components.

4.4.2.2.1.3. Wildfly Server Configuration

The	Wildfly	server	can	be	configured	to	run	on	one	of	two	modes:	standalone	
and	domain.	In	standalone	mode,	each	instance	of	the	Wildfly	server is	
configured,	deployed	and	managed	independently.	In	domain	mode,	a	set	of	
Wildfly	servers	is	configured,	deployed	and	managed	as	a	group,	known	as	a	
managed	domain.	Although	both	modes	support	HA	clustering,	managed	
domains	simplify	clustered	server	management	by	maintaining	a	consistent	
configuration	and	coordinating	updates	across	the	cluster.	As	shown	in	Figure	5,	
within	a	domain,	the	server	cluster	is	managed	by	a	designated Domain	
Controller,	which	coordinates	the	other	servers	by	way	of	a	Host	Controller	
instance	running	on	each host.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 31 of 42

Figure 5. Wildfly Clustering Using Managed Domains6

Configuration	of	the	managed	domain	is	defined	using	an	XML	file:	domain.xml.	
Among	other	things,	this	file	contains	the	cluster	definition	and	configuration	
settings	defined	as	part	of	a HA	profile.

Wildfly	provides	HA	services	through	two	features:

1. Failover – clients	interacting	with	a	server	instance	will	not	be	
interrupted,	even	if	the	node	on	which	the	instance	is	executing	fails.	
Wildfly	supports	failover	by	providing	distributed	storage	of	the	state	
information	needed	to	restore	processes,	and	by	relocating	processing	
across	the	cluster	upon	failure	of	the	underlying process	or node.

2. Load	Balancing – client	requests	are	distributed	across	the	available	
nodes	of	the	cluster	to	maintain	timely	response	in	the	presence	of	high	
request	volume.

4.4.2.2.1.4. Messaging

Java	EE	includes	the	JMS	standard	to	provide	for	message-based	communication	
between	processing	components	within	a	distributed	application.	JMS	provides	
multiple	messaging	patterns,	including	point-to-point	messaging	via	message	
queues,	as	well	as	publish-subscribe	messaging	via	message	topics.	Although	

																																																												
6 Reproduced	from	the	“Wildfly	Admin	Guide”	By	Heiko	Braun.	See	the	References	section	for	full	citation.	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 32 of 42

Wildfly	supports	integration	with	a	number	of	message	oriented	middleware	
technologies,	HornetQ	is	provided	as	the	default	solution.	The	E1	prototype	used	
HornetQ	publish/subscribe	topics	for	communication	among	components.

HornetQ	includes	a	number	of	High	Availability	(HA)	facilities	to	provide	at	least	
once or	once	and	only	once message	delivery	guarantees.	In	order	to	support	at	
least	once delivery	guarantees,	HornetQ includes	shared	persistence	of	message	
data	across	nodes	within	an	HA	cluster.	Two	alternate	approaches	are	provided:

 Message	Replication – Messages	are	replicated	on	multiple	nodes	within	
the	cluster	and	are	synchronized	continuously	across	the	network.	Upon	
failover	of	the	designated	live server,	the	designated	backup server	
retrieves	from	its	locally	replicated	messages	in	order	to	resume	message	
processing.

 Shared	Store – Messages	are	persisted	in	a	shared	storage	area	accessible	
from	the	nodes	of	the	HA	cluster	- typically,	a	storage	area	network	(SAN).	
Upon	failover	of	the	designated	live server,	the	designated	backup server	
retrieves	messages	from	the	shared	storage	area	in	order	to	resume	
message	processing.

In	order to	support	once	and	only	once delivery	guarantees,	HornetQ	supports	
transactional	processing,	where	any	in-progress	transactions	on	the	failed	node	
are	rolled	back	and	restarted	using	persisted	messages	on	the	backup	node.	
HornetQ	also	provides	a	duplicate	message	detection	capability	to	prevent	
repeated	message	processing	during	failover	for	non-transactional	deployments.	

4.4.2.2.2. Exploratory Prototype

For	the	E1	exploratory	prototype,	an	HA	cluster	was	defined	across	2	Virtual	
Machine	(VM)	hosts	using	a	managed	domain.	Each	VM	was	configured	to	host
an	instance	of	the	Wildfly	Server running	a	mock	seismic	processing	pipeline.	
The	mock	seismic	pipeline	was	defined	as	a	set	of	Message	Driven	Beans	
communicating	mock	waveform	and	signal	detection	data	via	a	set	of	HornetQ	
publish/subscribe	JMS	topics. The	purpose	of	this	prototype	was	to	further	
investigate	the	primary	features	of	a	processing	architecture	built	using	EJB,	CDI	
and JMS	within	a	Wildfly	application	server	cluster. Findings	based	on the	
prototype	are	discussed in	the	sections	below.

4.4.2.2.2.1. Wildfly Server Management

Definition	&	deployment	of	the	Wildfly	Managed	Domain	HA	cluster	was	
relatively	straightforward	given	the	solid	documentation	and	quick	start	
examples	available	from	the	JBoss	community. Wildfly	provides	a	sophisticated	
Command	Line	Interface	(CLI)	for	administration	of	the	runtime	environment,	
however, for	the	E1	prototype,	only	a	small	set	of	basic	commands	were needed	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 33 of 42

to	deploy	and	manage	the	application.	A	JBoss Eclipse	plugin	is	available,	which	
supports	execution	of	the	Wildfly	server	and	deployment	of	the	Java	EE	
application	via	Maven	from	within	the	Eclipse	IDE.	Wildfly	also	provides	a	
secure,	web-based	administration	interface	supporting	configuration	and	
monitoring.

4.4.2.2.2.2. Mock Seismic Pipeline

The	mock	seismic	pipeline	was	defined	as	a	collection	of	processing	components	
encapsulated	within	Message	Driven	Beans.	The	components	themselves	were	
implemented	as	Plain	Old	Java	Objects	(POJOs),	which	were	injected	into	their	
respective	MDBs	at	runtime	using	CDI.	Depending	on	their	role	within	the	
pipeline,	components	consumed	mock	waveform	and/or	signal	detection	data,	
and	produced	either	mock	waveform	data,	signal	detections, and/or	event	
hypotheses.	The	mock	inputs	and outputs	were	transmitted	between	processing	
components	asynchronously	using	JMS	topics	injected	into	the	MDBs	at	runtime	
using	CDI.	For	convenience,	a	servlet	was	defined	to	inject	mock	waveform	data	
into	the	front	end	of	the	pipeline	by	way	of	a client	web	page.	Figure	6 depicts	
the	mock	pipeline	processing	components,	data	provider	servlet, and	JMS	
message	paths.

Although	it	was	not	implemented	as	part	of	the	E1	pipeline,	the	prototype	was	
designed	in	such	a	way	that	the processing	components	could be	instantiated	
separately	within	Session	Beans	as	part	of	a	mock	interactive	analysis	interface.

Development	of	the	MDBs,	JMS	interfaces	and	processing	components	was	
straightforward	and	benefitted	significantly	from	a	wealth	of	solid	
documentation	and	quick-start	example	code	available	from	the	JBoss
community.	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 34 of 42

Figure 6. E1 Prototype Mock Seismic Pipeline

4.4.2.2.2.3. Limitations

A	significant	limitation	of	Java	EE	that	was	discovered	as	part	of	the	evaluation	is	
the	lack	of	support	for	execution	of	native	software	within Java	EE	applications.
The	EJB	standard	prohibits	loading	of native	libraries	(e.g.	via	Java	Native	
Interfaces	or	Java	Native	Access)	from	within	the	EJB	container.	Similarly,	the	
standard	prohibits the	explicit	execution	of	threads	within	the	EJB-managed	
applications.	These restrictions	in	the	standard are intended	to	preserve	the	
security,	stability	and	portability	of	Java	EE	applications;	however,	they	
eliminate	the	ability	of	the	application	to	directly	invoke	processing	components	
implemented	in	non-JVM	languages	such	as	C	and C++.

One	option	for	overcoming	this	limitation	is	to	use	web	services	to	communicate	
between	the	Java	EE	applications	and	non-JVM	components	of	the	system.	This	
solution	was	not	included	as	part	of	the	E1	prototype	and	should	be	addressed	in	
follow-on	work	in	order	to	assess	the	viability	of	a	Java	EE-based	architecture	for	
mixed-language	applications	pending	a	decision	regarding	the	scale	and	usage	
pattern	of	non-JVM	software	within	the	modernized	system architecture.	

4.4.2.2.2.4. Conclusions

An	architecture	built	from	the	Java	EE	technologies	used	in	the	E1	prototype	
provides	a	flexible,	robust,	fault-tolerant	distributed	processing	capability	that	is	
well	suited	to	development	of	a	Java-based	automated	processing	pipeline.	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 35 of 42

Harnessing	additional	Java	EE	technologies	such	as	Session	Beans	will	likely	
provide similarly	powerful	capabilities for	the	development	of	interactive	
analysis	processing	components.

The	Wildfly	server	provides	a	stable,	secure	and	user	friendly	runtime	
environment	enabling	deployment	and	management	of	highly-available	Java	EE	
processing	applications.

Together	the	Java	EE	APIs	and	Wildfly	server	administration	tools,	
documentation	and	examples enable highly	efficient	application	development.

A	significant	limitation	of	the	Java	EE	architecture	is	the	lack	of	support	for	
execution	of	non-JVM	software	components. Solutions	for	this	use	case	should	be	
evaluated in	follow-on	work	in	order	to	understand	the	viability	of	Java	EE	
technology	in	the	modernized	system architecture.

4.5. Follow-On Work

Four areas	of	follow-on	work	have	been	identified for	iteration	E2 and	beyond
based	on	the	E1	prototyping	activities:

1. Explore	additional	PCF	solutions,	based	on	input	from	the	community

2. Assess	custom	PCF	solutions

3. Develop	a	basic	processing	pipeline	prototype

4. Select	a	PCF	solution	for the	executable	architecture	prototype

4.5.1. Explore additional PCF solutions

In	iteration	E2, the	prototyping	team	will	solicit	and	incorporate	candidate	
solutions	from	the	community.	The	intent	is	to	leverage	design	and	prototyping	
knowledge	available	from	applicable	development	organizations	and	to	ensure	
that	informed	decisions	are	made	in	the	development	of	a	processing	control	
framework	considering	a	breadth	of	candidate	solutions.

Emphasis	will	be	placed	on	existing	design	patterns	and	associated solutions	
that	provide	flexible,	multi-language	processing	support	with	minimal	coupling	
between	components.

4.5.2. Assess custom PCF solutions

In	iteration	E2,	the	prototyping	team	will	assess	custom	solutions	meeting	the	
requirements	of the	processing	control	framework.	The	purpose	of	this	effort	is	
to	determine	whether	a	solution	incorporating	more	substantial	custom	

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 36 of 42

software will better	meet	the	needs	of	the	system	than	the	COTS-based	solutions	
explored	in	iteration	E1.

4.5.3. Select a PCF solution for the executable architecture prototype

Based	on	the	E1	and	E2	exploratory	prototyping,	the	team	will	select	a	solution	
for	use	in	developing	the	PCF element	of	the	executable	architecture	prototype.	
This	selection	will	be	completed	by	the	end	of	the	E2	iteration,	in	order	to	
allocate sufficient time	for	iterative	development	of	the	executable	architecture	
prototype	in	iterations	E3-E4.

4.5.4. Develop a Basic Processing Pipeline Prototype

Beginning	in	E2,	the	prototyping	team	will	assemble	a	representative	set	of	
seismic	processing	components	based	on	software	baselines	drawn	from	GNEM-
related	research	projects	and	possibly	from	existing	US	NDC	and IDC	
applications.	These	components	will	provide	more	representative processing
software	for	use	in	further	evaluation of	candidate	PCF	solutions,	performance	
benchmarking,	and	development	of	the	executable	architecture	prototype.

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 37 of 42

APPENDIX A. COMPARISON OF PROTOTYPE AND EXISTING SYSTEM PROCESSING CONTROL
FRAMEWORKS

Table 2: Feature sets of E1 Prototype Candidates and Current Systems

Feature

E1 Prototype Candidates Existing Systems

Apache Storm Java EE/Wildfly US NDC
(Current)

IDC (Current) NEIC (Current) SeisComp3

Processing
Deployment &
Execution

Apache Storm /
Apache
Zookeeper

Wildfly Custom Custom Custom Custom

Processing
Definition

Apache Storm,
Apache Thrift

Wildfly Custom Custom Custom Custom

HA Clustering
Apache Storm /
Apache
Zookeeper

Wildfly mod_cluster N/A N/A N/A N/A

Transaction
Management

Trident Wildfly JTA N/A N/A N/A N/A

Messaging
Multiple:
ZeroMQ, Netty,
Kafka

Multiple JMS
providers (default:
HornetQ JMS)

Oracle
Advanced
Queuing

Tuxedo Custom Spread

PROCESSING CONTROL FRAMEWORK DECEMBER 2014

SAND-xxxx Page 38 of 42

Table 3: E1 Survey Results Summary

Category Candidate
Solution

Summary Assessment

Enterprise
Java

Application
Frameworks

Java EE

Advantages: Widely-used open standards with large development
community. Provides a robust platform for development of scalable, fault-
tolerant, distributed processing architectures.

Disadvantages: EJB standard prohibits use of native libraries and direct
thread creation, limiting design options supporting non-JVM languages.

Spring
Framework

Advantages: Widely-used open-source solution with large development
community. Provides a robust platform for development of scalable, fault-
tolerant, distributed processing architectures.

Disadvantages: Not standards-based.

Stream
Processors

Apache
Storm

Advantages: Open-source solution with significant industry interest.
Provides a robust platform for development of scalable, fault-tolerant,
distributed processing architectures. Supports multiple development
languages.

Disadvantages: New offering. Not standards-based.

Apache
Samza

Advantages: Provides a robust platform for development of scalable,
fault-tolerant, distributed processing architectures.

Disadvantages: New offering that has yet to establish significant industry
interest. Not standards-based. Does not support multiple languages(Java
only).

Apache S4

Advantages: Provides a robust platform for development of scalable,
fault-tolerant, distributed processing architectures. Supports multiple
development languages.

Disadvantages: Little industry interest and development activity. Not
standards-based.

Enterprise
Service Bus

WS02 ESB

Advantages: Provides a robust platform for integration of heterogeneous
systems via standardized messaging as part of a service-oriented
architecture.

Disadvantages: Design strengths not well aligned to the end-state
modernized architecture (US NDC and IDC are not heterogeneous
system of systems).

Complex
Event

Processor
Esper

Advantages: Provides a robust platform for development of scalable,
fault-tolerant, distributed processing architectures.

Disadvantages: Specialized, query-based architecture does not fit
system processing needs particularly well. Not standards-based. Does
not support multiple languages (Java only).

APPENDIX A. COMPARISON OF PROTOTYPE AND EXISTING SYSTEM PROCESSING CONTROL FRAMEWORKS

Page 39 of 42

REFERENCES

1. Storm:	Distributed	and	Fault	Tolerant	Realtime	Computation,	The	Apache	Software	
Foundation,	(http://storm.incubator.apache.org/).

2. S4:	Distributed Stream	Computing	Platform,	The	Apache	Software	Foundation,	
(http://incubator.apache.org/s4/).

3. Samza,	The	Apache	Software	Foundation,	(http://samza.incubator.apache.org/).

4. Esper,	EsperTech Inc.,	(http://www.espertech.com/products/esper.php).

5. WS02	Enterprise	Service	Bus,	WS02,	(http://wso2.com/products/enterprise-service-
bus/).	

6. Mule	ESB, MuleSoft	Inc.,	(http://www.mulesoft.org).	

7. Kafka:	A	High-Throughput	Distributed	Messaging	System,	The	Apache	Software	
Foundation,	(http://kafka.apache.org/).

8. Apache	Hadoop	NextGen	MapReduce	(YARN),	The	Apache	Software	Foundation	
(http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-
site/YARN.html).

9. Zookeeper,	The	Apache	Software	Foundation,	(http://zookeeper.apache.org/).

10. ZeroMQ,	iMatix	Corporation,	(http://zeromq.org/).

11. Netty,	The	Netty	Project,	(http://netty.io/).

12. Apache	Thrift,	The	Apache	Software	Foundation,	(http://thrift.apache.org/).

13. Apache	Helix,	The	Apache	Software	Foundation,	(http://helix.apache.org/).

14. Oracle	Glassfish,	Oracle	Corporation,	
(http://www.oracle.com/us/products/middleware/cloud-app-
foundation/glassfish-server/).

15. Apache	Tomcat,	The	Apache	Software	Foundation,	(http://tomcat.apache.org/).

16. Jetty,	The	Eclipse	Foundation,	(http://www.eclipse.org/jetty/).

17. WebLogic,	Oracle	Corporation,	(http:www.oracle.com/WebLogic).

18. WebSphere,	IBM,	(www.ibm.com/software/websphere/).

19. Petrel,	(https://github.com/AirSage/Petrel)

APPENDIX A. COMPARISON OF PROTOTYPE AND EXISTING SYSTEM PROCESSING CONTROL FRAMEWORKS

Page 40 of 42

20. C++	Wrapper	for	Storm,	2012,	(http://demeter.inf.ed.ac.uk/cross/stormcpp.html).

21. Storm-Kafka, (https://github.com/nathanmarz/storm-contrib).

22. Noll,	Michael,	Running	a	Multi-Node	Storm	Cluster,	2013	(http://www.michael-
noll.com/tutorials/running-multi-node-storm-cluster/).

23. Hamlet,	Benjamin	R.,	et.	al.,	US	NDC	Modernization:	Service	Oriented	Architecture	
Proof	of	Concept,	Sandia	National	Laboratories,	Albuquerque,	NM	87185,	December	
2014.

24. Jendrock,	Eric,	Cervera-Navarro,	Ricardo,	Evans,	Ian,	Haase,	Kim,	Markito,	William,	
Srivathsa,	Chinmayee.	“Java	EE	7	Tutorial.” Oracle	Java	EE	Documentation.	Oracle,	
September	2013.	Web.	http://docs.oracle.com/javaee/7/tutorial/doc/home.htm.

25. Wheeler,	Willie	&	White,	Joshua,	Spring	in	Practice,	Manning	Publications,	2013.	
Print.

26. Braun,	Heiko.	“Wildfly	Admin	Guide.”	Wildfly	8	Documentation.	JBoss,	Jan	22,	2014.	
Web.	https://docs.jboss.org/author/display/WFLY8/Admin+Guide

27. Braun,	Heiko.	“Developer	Guide.”	Wildfly	8	Documentation.	JBoss,	Jan	22,	2014.	Web.	
https://docs.jboss.org/author/display/WFLY8/Developer+Guide

28. Maple,	Simon,	Shelajev,	Oleg,	Muuga,	Sigmar,	White,	Oliver.	“The	Great	Java	
Application	Server	Debate	with	Tomcat,	JBoss,	GlassFish,	Jetty	&	Liberty	Profile.”
RebelLabs.	RebelLabs,	May	21,	2013.	Web.	
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-
with-tomcat-jboss-glassfish-jetty-and-liberty-profile/

29. White,	Oliver.	“Developer	Productivity	Report	2012:	Java	Tools,	Tech,	Devs	&	Data.”	
RebelLabs.	RebelLabs,	May	15,	2012.	Web.
http://zeroturnaround.com/rebellabs/developer-productivity-report-2012-java-
tools-tech-devs-and-data/

30. O’Grady,	Stephen.	“New	Relic	and	the	State	of	the	Stacks.”	RedMonk.	Redmonk,	June	
13,	2012.	Web.	http://redmonk.com/sogrady/2012/06/13/new-relic-stack-data/

31. Noll,	Michael.	Understanding	the	Parallelism	of	a	Storm	Topology,	2012	
(http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-
of-a-storm-topology/).

APPENDIX A. COMPARISON OF PROTOTYPE AND EXISTING SYSTEM PROCESSING CONTROL FRAMEWORKS

Page 41 of 42

APPENDIX A. COMPARISON OF PROTOTYPE AND EXISTING SYSTEM PROCESSING CONTROL FRAMEWORKS

Page 42 of 42

This	is	the	last	page	of	the	document.

